A new circular photonic crystal fiber for effective dispersion compensation over E to L wavelength bands

نویسندگان

  • M. M. Haque
  • Samiul Habib
  • Selim Habib
  • S. M. A. Razzak
چکیده

This paper presents a new circular photonic crystal fiber (C-PCF) for effective dispersion compensation covering E to L wavelength bands ranging from 1360-1625 nm. To investigate its guiding properties, finite element method (FEM) with a perfectly matched layer absorbing boundary condition is used. From our numerical simulation, it is found that the designed C-PCF simultaneously shows a large negative dispersion of about -248.65 to -1069 ps/(nm.km) over E to L wavelength bands and a relative dispersion slope (RDS) exactly equal to that of a single mode fiber (SMF) at 1.55 μm wavelength. It is also found that residual dispersion after compesating 40 km long SMF is within ±62 ps/nm which ensures application of C-PCF in high speed WDM system. Besides, dispersion slope, slope compensation ratio, effective area and confinement loss of the proposed C-PCF are also evaluated and discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wideband Dispersion Compensation in Square Lattice Photonic Crystal Fibe

In this paper, a new structure is provided for the dispersion compensating photonic crystal fibers in order to broaden the chromatic dispersion and increase the dispersion compensating capability in a wide wavelength range. In the structure, putting a combination of circular holes and a star structure in the inner core clad causes the dispersion coefficient profile to be broadened, and addition...

متن کامل

Wideband Dispersion Compensation in Hexagonal Lattice Photonic Crystal Fiber

In this paper, a new structure is provided for the dispersion compensating photonic crystal fibers in order to broaden the chromatic dispersion and increase the dispersion compensating capability in a wide wavelength range. In the structure, putting elliptical holes in the first ring of the inner core clad of a dispersion compensating fiber of the hexagonal lattice, increases the wavelength ran...

متن کامل

Design of Single Mode Photonic Crystal Fiber with Outstanding Characteristics of Confinement Loss and Chromatic Dispersion over S to L Communication Band

In this article, a novel structure of photonic crystal fiber with nearly zero ultra-flattened chromatic dispersion and ultra-low confinement loss is presented. By replacing the circular air-holes of two first rings with the elliptical air-holes, a fiber with outstanding features of chromatic dispersion and confinement loss is designed. The proposed structure is optimized for operating in a wide...

متن کامل

Numerical Analysis of Index-Guiding Photonic Crystal Fibers with Low Confinement Loss and Ultra-Flattened Dispersion by FDFD Method

In this article, perfectly matched layer (PML) for the boundary treatment and an efficient compact two dimensional finite-difference frequency-domain (2-D FDFD) method were combined to model photonic crystal fibers (PCF). For photonic crystal fibers, if we assume that the propagation constant along the propagation direction is fixed, three-dimensional hybrid guided modes can be calculated by us...

متن کامل

Improvement of Optical Properties in Hexagonal Index-guiding Photonic Crystal Fiber for Optical Communications

Waveguides with low confinement loss, low chromatic dispersion, and low nonlinear effects are used in optical communication systems. Optical fibers can also be employed in such systems. Besides optical fibers, photonic crystal fibers are also highly suitable transmission media for optical communication systems. In this paper, we introduce two new designs of index-guiding photonic crystal fiber ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013